Psychological Flexibility, Pain Characteristics and Risk of Opioid Misuse in Noncancerous Chronic Pain Patients

Amanda Claire Rhodes, MA

Kean University

Brattleboro Retreat

Donald Marks, PsyD Kean University

Jennifer Block-Lerner, PhD Kean University

Timothy Lomauro, PhD VA New Jersey Health Care System

Opioid Use – The dark side

- In 2008, the American Pain Society and the American Academy of Pain Medicine constructed of team of multidisciplinary experts to systematically review empirical evidence for chronic opioid therapy for chronic noncancerous pain.
- Limited research suggested that chronic opioid therapy may be effective for a subset of selected and monitored
 patients
- RCTS for opioids have yielded reductions in pain ranging from 18% to 66% (weighted mean is 33%)
 - Clark and colleagues (2002) found pain reduction also occurred with inactive (10%) and active (20%) placebos
- Common opioid-related adverse effects include
 - Constipation
 - Nausea
 - Vomiting
 - Sedation and clouded mentation
 - Hypogonadism
 - Fatigue and decreased levels of concentration
 - Itchy Skin
 - Twitching

Opioid Use – Misuse, Abuse & Addiction

- Increase in misuse of prescribed opioids
- Increase in opioid-related mortality
 - Prescribed opioids have directly or indirectly caused more than 100,000 deaths in the United States
- Opioid sales have increased 400% between 1999 and 2014

Opioid misuse and abuse in the US population range from 1% to 40%

Pain-Related Distress

SEVERITY

•Considered the primary form of pain-related distress

•Greater pain severity reported in one week was significantly associated with increased opioid use in the following week.

INTERFERENCE

- The degree to which pain experience limits daily life functioning domains
 - (e.g., mood, walking and other physical activity, work, social activity, relations with others and sleep)
- •Higher levels of pain interference have been associated with intermittent/lower-dose and regular/higher-dose opioid use compared to minimal use or nonuse

Trauma and Chronic Pain

- Many studies revealed a positive association between psychological trauma, physical abuse and sexual abuse
 - chronic abdominal pain
 - pelvic pain
 - musculoskeletal pain
 - low back pain
 - fibromyalgia
- Underlying mechanisms remains unclear

Psychological Flexibility & Pain

- •A growing interest in acceptance of pain, in acceptance-based therapies, rather than controlling or fighting the pain.
- •Acceptance-based therapies suggest that neither pain nor the content of pain-related thoughts causes problematic behaviors; instead, it is the patient's relationship to these experiences and thoughts that are problematic.
- •Research suggests that acceptance is associated with increased pain tolerance and decreased recovery time compared to distraction and control tactics
- •In addition, acceptance in patients with chronic pain has been associated with better emotional, social and physical functioning

Present Study

- Examines the relationships between
 - Early trauma
 - Pain severity
 - Pain interference
 - Risk of opioid misuse
- •Evaluates if psychological flexibility plays a role in these relationships
- Medical and behavioral health professionals may better provide appropriate treatment services.
- Opioid misuse potential may be better understood and risk for developing opioid addiction may be reduced.
- •Clinical interventions may be enhanced through use of information about the relationships between early aversive histories, psychological flexibility, and chronic pain characteristics.

Hypotheses – Predicting Risk for Opioid Misuse

Hypotheses – Mediating with Psychological Flexibility

Method

PARTICIPANTS

Recruited from outpatient pain clinics in the northeastern US

- 99 participants
 - Over 18 years old
 - Currently being treated for pain
 - Noncancerous-related pain
 - English fluency

PROCEDURE

- Recruited from the waiting areas of outpatient pain clinics
- Voluntary
- Raffle
- Consent Form
- Measures
- •Administration of all materials were in person, via paper and pencil.

Measures

Demographic Questionnaire

• self-reported age, gender, ethnicity, weight, prescription information

The Brief Pain Inventory-Short Form (BPI-SF; Cleeland and Ryan, 1994)

 11-item self-report measure, has been widely used to measure daily pain severity and pain interference in individuals with chronic and persistent pain

Acceptance and Action Questionnaire II (AAQ-II; Bond et al., 2011)

 7-item self-report measure, assesses a person's experiential avoidance, immobility, as well as acceptance and action of psychological flexibility

Childhood Trauma Questionnaire (CTQ; Bernstein & Fink, 1998)

28-item self-report measure, is designed to assess diverse forms of childhood maltreatment and early aversive experiences, including sexual abuse, physical abuse, emotional abuse, physical neglect, and emotional neglect

<u>Screener and Opioid Assessment for Patients with Pain - Revised (SOAPP-R; Butler, Fernandez, Benoit, Budman & Jamison, 2004)</u>

 24-item self-report measure, is designed to measure an individual's relative risk for developing long-term opioid use related problems

Table 1

Demographic Characteristics of Participants (N = 99)

Characteristic	n	%	М	SD
Gender				
Female	32	32.3		
Male	67	67.7		
Age (years)	96		57	12.9
Weight(pounds)	94		190.7	42.7
Race				
American Indian or Native American	1	1		
Asian	3	3		
Black or African American	20	20.2		
Hispanic	6	6.1		
White or Caucasian	63	63.6		
Other	3	3		
Opioid Prescription				
Yes	64	64.6		
No	33	33.3		
Type of Opioid Prescription				
Hydrocodone	2	3.1		
Hydrocodone/acetaminophen	4	6.3		
Hydromorphone	2	3.1		
Morphine	6	9.4		
Oxycodone	16	25		
Oxycodone/acetaminophen	15	23.4		
Did Not Know	4	6.3		
Multiple	15	23.4		

Note. Percentages of opioid prescriptions are based on the total number of patients who were prescribed opioids, not the total sample

Table 3
Summary of Correlations for Scores on the SOAPP-R, BPI-SF subscales, CTQ and AAQ-II

Measure 1. SOAPP-R 2. BPI-SF (Severity) 3. BPI- SF (Interference) 4. CTQ 5. AAQ-II	1	2	3	4	.63** .44** .58**
	.20* .40** .23* .63**	.20*	.40**	.23* .10 .08	
		.55** .10 .44**	.55** .08 .58**		

Note. Spearman two-tailed correlations are reported. * p < .05; ** denotes correlation is significant at p < .001.

Model 1 Pain Severity - Psychological Flexibility - Risk for Opioid Misuse

Model 2 Pain Interference- Psychological Flexibility - Risk for Opioid Misuse

Model 3 Childhood Trauma - Psychological Flexibility - Risk for Opioid Misuse

Model 4 Pain Severity — Psychological Flexibility — Pain Interference

What we know

- > Pain severity predicted risk for opioid misuse (Model 1)
- ➤ Pain interference predicted risk for opioid misuse (Model 2)
- ➤ Early trauma predicted risk for opioid misuse (Model 3)
- > Pain severity predicted pain interference (Model 4)
- > Psychological flexibility mediated Models 1, 2, & 4

psychological flexibility appears to be a significant process in many of these pathways!

What we still have to learn

- Can interventions targeting psychological flexibility affect the outcome measures.
- What about psychological flexibility is significant
 - Look for other significant mediators
 - Look for moderated mediators
- Examine lifetime occurrences of trauma
- Examine these models in other patient populations
 - Veterans
 - Oncology
- **Examine the influence of diversity factors**
 - E.g. gender, race, length of opioid treatment, length of pain

